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Abstract 
The Water Research Laboratory (WRL) of the University of New South Wales has completed a 
range of investigations for the large seawater desalination plants projects in Australia (Sydney, 
Melbourne and Perth) during the planning and design stages. Investigations comprised collection 
of current and wave data, analysis of oceanographic and water quality data, far field current and 
dispersion modeling, near-field dilutions modeling for the diffuser design of the seawater 
concentrate outfall, conceptual diffuser design and diffuser hydraulic testing (riser cap head loss). 
 
WRL has found through extensive physical modeling that numerical modeling tools available 
generally over predict the amount of mixing brine for outfalls with many jets in close proximity. 
This paper presents an overview of the of over 40 physical model tests with various riser spacing, 
number of ports per riser and angles of risers.  This paper will also summarise the design 
considerations for a large desalination outfall including determining: the appropriate regulatory 
requirements; the number and design of the ports; internal riser hydraulics; dilution targets; 
operational issues with changing production regimes; and post-commissioning monitoring. 
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INTRODUCTION 
 
Australia has constructed several large seawater desalination plants over the past decade. Generally 
these have involved a subsurface tunnel conveying brine from the plant into one or more risers.  
These risers have been configured with diffuser nozzles which are oriented upward and placed 
above the sea bed to limit entrainment of marine biota in the discharge plume so that the plumes are 
jetted upwards into the water column before settling back towards the bed. 
 
Australia’s desalination plants have had stringent environmental targets. The approach to the large 
Australian desalination plant outfalls has been to target getting all possible dilution in the near field 
and have little reliance on far field dispersion. As such, designing outfall must be within the 
limitations of the available hydraulic head, water depth and mixing between jets (proximity of each 
jet and interaction of adjacent jets when entrainment capacity begins to be limited) and the window 
of discharges and density differences during day to day operation. 
 
Since 2005, the Water Research Laboratory (WRL) of the University of New South Wales has 
completed a range of investigations for the large seawater desalination plants projects in Australia 
(Sydney, Melbourne and Perth) during the planning and design stages. Investigations comprised 
collection of current and wave data, analysis of oceanographic and water quality data, far field 
current and dispersion modeling, near-field dilutions modeling for the diffuser design of the 
seawater concentrate outfall, conceptual diffuser design and diffuser hydraulic testing (riser cap 
head loss). 
 
  



WRL has found through extensive physical modeling that numerical modeling tools available 
generally over predict the amount of mixing brine for outfalls with many jets in close proximity. 
This paper presents an overview of the of over 40 physical model tests with various riser spacing, 
number of ports per riser and angles of risers.  This paper will also summarise the design 
considerations for a large desalination outfall including determining: the appropriate regulatory 
requirements; the number and design of the ports; internal riser hydraulics; dilution targets; 
operational issues with changing production regimes; and post-commissioning monitoring. 
 
 
REGULATORY REQUIREMENTS AND DILUTION TARGETS 
 
Australian water quality guidelines provide no generic guideline for elevated salinity and hence site 
specific studies were required for each plant.  The regulatory requirements were commonly focused 
on: elevated salinity, reduced dissolved oxygen, ecotoxicology and visual amenity. 
 
It is not the intent to discuss all aspects of each set of regulatory requirements, but rather provide an 
overview of the main environmental concerns. 
 
Each location had subtly different environmental conditions and as such the approach to 
determining the regulatory requirements was different.  In Perth, discharge was to Cockburn Sound 
where the annual fluctuation in natural salinity levels was more than 3ppt, but a natural stratification 
exists which might be exacerbated by discharged brine.  As such, the salinity requirements were 
determined by balancing stratification with natural environmental mixing such as winds.  In Sydney 
and Melbourne, discharge was to the open coast and the salinity requirements were determined 
through the natural variation in background salinity. 
 
The specific salinity requirements were different for each plant but were at most 1 ppt above 
background by the end of the near field.  During the design phases, the salinity of the discharge 
usually had not been finalized, but on the basis of 65ppt into seawater of 35ppt, this equates to a 
dilution of 30 times.  Considerable time was spent during the design of each plant to “the end of the 
near field” both in engineering and legal terms. 
 
Dissolved oxygen was of no concern except in the case of increased stratification where sediment 
oxygen demand might reduce oxygen levels below this additional stratification.  However, it was 
found that the environmental mixing from winds was adequate to breakdown any stratification from 
a 1ppt salinity gradient in all but the most calm conditions. 
 
Eco-toxicological studies were required for each site.  For the range of additional substances in the 
brine stream, it was commonly determined 30 times dilution would be more than adequate for 
acceptable toxic effects. The timeframe required to undertake adequate baseline ecotoxicological 
studies should never be underestimated. 
 
Visual amenity was prescribed so that the plume must be not be at the water surface. This concern 
was primarily for the discharge of coloured materials.  However, since such materials were not 
finally discharged, this requirement was not particularly important. 
 
In summary, the regulatory requirements for desalination discharges in Australia have been 
stringent.  However, although dilution targets were mainly to meet the imposed environmental 
regulatory requirements, these high dilutions also allow for the spacing between the intakes and the 
outfalls to be reduced without significant increases in re-entrainment.  



DETERMINING THE LOCATION 
 
The location for an outlet discharge from a desalination plant is commonly determined by the 
plant’s location itself.  The location of the plant is influenced by a great number of things including 
available land, power, delivery of freshwater and the marine conditions. 
 
The oceanographic component of the first pass process for determining a suitable location along a 
section of coastline, was dominated more by appropriate quality seawater intake than suitable 
conditions for discharge.  To this extent, local and regional hydrodynamic models were utilised.  
WRL was only involved with the site selection for the Sydney Desalination Plant, so discussion 
here is limited to the techniques used for Sydney. 
 
There were three main oceanographic issues relating to the Sydney desalination plant intakes [1].  
These were whether known pollutant sources were likely to be drawn into the plant, whether the 
volume of water being drawn in was greater than the natural exchange of water in the vicinity and 
whether the intake was likely to draw elevated salinity levels by recirculating the discharged 
seawater concentrate.  There were two main oceanographic issues pertaining to the outlets.  These 
were whether adequate dilution at the point of discharge (near-field) to avoid environmental stress 
could be achieved and the fate of the diluted seawater concentrate as it would move away from the 
point of discharge (far-field). 
 
These issues required an understanding of the oceanographic processes over the wider Sydney 
region. Sydney Water implemented an ocean monitoring program during 2005 and 2006 to provide 
data on currents, wind, water levels, salinity and water temperature in the region of the Kurnell 
peninsula. Through statistical and scientific analyses of these data a greater understanding of the 
physical oceanographic processes, in terms of current speed and direction, salinity and temperature, 
occurring in the region was been gained. 
 
Numerical modelling provided the best method to assimilate and use all of the available data. Using 
the RMA-10 three dimensional hydrodynamic model and the 3DRWALK lagrangian particle 
tracking model, WRL modelled a year of ocean conditions to generating long term statistics 
pertaining to each of the main issues identified.   
 
For the planning process of the desalination plant outlets, it was evident that detailed site specific 
mapping of geotechnical, coastal and ecological factors would not be completed until the final 
design for construction.  This focused the outlet design to achieve all necessary dilutions within the 
near-field.  This allowed for the greatest amount of flexibility in the final outfall location without 
relying on far field dispersion. 
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However, these reductions from single jet dilutions by having nearby jets could be often justified by 
having reduced construction costs or timelines. 
 
The spacing between the risers is influenced by wishing to minimise any competition for 
entrainment between risers while also wishing to minimise the construction costs.  For example, 
having the spacing so that riser tunnels could be drilled from either end of a jack-up barge would 
half the number of times the barge needed to move. 
 
A interesting finding was also that the discharge of large amounts of brine through a high energy 
and therefor high entraining diffuser would establish a circulation that would draw surface based 
clear seawater towards the diffusers, entrain this water into the diluting brine stream and result in a 
bed current moving away from the diffuser.  This process ensures that provided there is an 
adequately large amount of seawater about the diffuser, the dilution process will continue even with 
very little oceanic flux through the diffuser region. 
 
 
THE USE OF NUMERICAL MODELLING IN THE NEAR FIELD DESIGN PROCESS 
 
Numerical modelling of the near field was the appropriate first pass for determining the diffuser 
design.  Use of the empirical method of Roberts et al [2] was common with subsequent use of 
models such as VISJET.  Further, empirical methods for estimating the near field dilution from jets 
into cross currents [3] were used to assess the differences between minimum and median dilutions. 
 
These numerical models and methods provide a good basis for the dilution to be achieved from a 
single jet.  However, when trying to constrain the number of risers by maximising the number of 
jets per riser, it was found that the numerical models over predicted.  Based on the physical 
modelling of port configurations investigated at WRL, the numerical modelling methods commonly 
available today generally over predict the amount of mixing brine outfalls when there are many jets 
in close proximity.   
 
For example, a multiport riser with six nozzles spaced equally about the perimeter, the final near 
field dilution was approximately half of that for a single port.  This indicates that care should be 
exercised if relying solely on numerical methods. 
 
 
INTERNAL RISER HYDRAULICS 
 
A riser cap with multiple ports can often have a total hydraulic head loss which is greater than the 
sum of the components if calculated individually.  To assess the overall internal riser hydraulics, 
scale modelling was used at a scale of approximately 1 in 10.  Using Reynolds scaling, it is not 
possible to achieve the Reynolds numbers in the model equal to the prototype (exit velocities would 
need to be in the order of 60m/s).  Instead many different flow rates were tested to the maximum 
possible in the hydraulics laboratory and the head loss expressed as a ratio of the discharge velocity 
squared divided by 2.g.  As this K factor for was not varying with Reynolds number it was deemed 
acceptable to also use this K for the prototype Reynolds numbers.  Different configurations were 
tested, and the finding was that the K factor for the overall cap was between 1.3 and 1.5 when using 
the exit velocity at the nozzle. 
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