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Abstract 

This paper reports on our experiences developing methods to survey an ocean outfall discharge plume using 
an Autonomous Underwater Vehicle (AUV).  .  The mobility of an AUV provides a significant advantage in 
surveying discharge plumes over traditional boat-based methods, and when combined with optical and 
oceanographic sensors, provides a capability for both detecting plumes and assessing their  mixing in both the 
near and far-fields.  Unique to this study is the optical sensing of of the presence of Colored Dissolved 
Organic Matter (CDOM) in the discharge plume for quantitatively assessing the dilution ratio of the plume 
water.  This capability is demonstrated for two Publicly Operated Treatment Works (POTWs) located 
offshore San Diego, California that have significantly different environmental settings and operating 
parameters.  The first is the South Bay Ocean Outfall (SBOO) operated by the International Boundary Water 
Commission (IBWC) whose discharge is located in approximately 30m deep water at a flow rate of 28 
million gallons per day (MGD).  The second discharge is the Point Loma Ocean Outfall (PLOO) which 
discharges at approximately 90m with a nominal volume flow rate of 250 MGD.  The methodologies for 
planning the AUV missions to sample the discharge plume, characterizing the plume using the signals 
measured by the onboard oceanographic and optical sensors, and use of those data in predictive models is 
outline.  The results suggest that even in variable oceanic conditions, properly planned missions for AUVs 
equipped with appropriate sensors can accurately characterize and track ocean outfall plumes with high 
spatial resolution more effectively than traditional methods. 
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INTRODUCTION 
Routine ocean outfall plume detection and mapping remains an elusive task for operators of Publicly 
Operated Treatment Works (POTWs), yet is often a requirement for permits which require monitoring the 
receiving waters to assess environmental impacts and exceedances of regulatory standards.  A principal 
challenge in tracking a plume is spatial variability of the ocean currents and density structure in coastal 
waters, resulting in uncertainty in assessing plume direction when sampling at discrete time intervals – all 
too often the plume is missed.  For example, Terrill et al (2009) show that monthly sampling of a discharge 
offshore San Diego using traditional Conductivity, Temperature, Depth (CTD) grids were only able to detect 
the discharge plume twice out of 16 monthly surveys. The density stratification and primary current direction 
are typically used in the design phase of siting a POTW discharge and estimating bulk plume properties such 
as rise height, width, and thickness, but the environmental information is often not available to guide the 
sampling of the plume on a routine basis.  Likewise, sensors for clear, unambiguous detection of the 
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wastewater plume are not routinely used within a discharger’s monitoring plan to characterize the location of 
the plume.    
 
Evolving technology in the field of oceanographic instrumentation continues to enhance survey methods for 
detecting and mapping ocean outfall plumes.  Traditional methods of plume detection include using natural 
tracers associated with the effluent (Jones et al., 1990, 1991, 1993; Washburn et al., 1992; Wu et al., 1994), 
acoustic backscatter methods (Dammann et al., 1991; Besiktepe et al., 1995; Petrenko et al., 1998) and 
introduced tracer techniques (Proni et al., 1994; Carvalho et al., 2002; Hunt et al., 2010).   Since these 
methods are traditionally employed from boats operating in a survey mode or involve capturing water 
samples at a limited number of stations, the analysis of the data is often difficult due to poor spatial sampling 
that may not represent the full extent of the plume making it difficult to accurately measure its characteristics 
(Ramos et al., 2007).  Modern techniques using the methods listed above on a mobile platform, an 
autonomous underwater vehicle (AUV), have proven to be a more effective approach for mapping ocean 
outfall plumes (Wu et al., 1994; Fletcher, 2001; Ramos, et al., 2000, 2002, 2007).  AUVs increased spatial 
resolution, adaptive sampling options, and reduced spatial aliasing effects, decreasing operational costs. This 
has made them an appealing approach when compared to traditional monitoring techniques.  
 
This paper presents a plume mapping method utilizing as natural tracer colored dissolved organic matter       
(CDOM) measured by a Remote Environmental Measuring UnitS (REMUS) class AUV.  Near real-time in 
situ current and temperature profiles were measured by an Acoustic Doppler Current Profiler (ADCP) and 
thermistor chain at the outfall. The support mission planning included particle trajectory estimates and 
prediction modelling of near-field behaviour of the buoyant discharge jet.  These data served as decision aids 
for adaptively planning AUV missions.  In this paper we present successful measurements of plume rise 
height, width, mixing zone length, thickness and dilution ratios, under highly variable ocean conditions, 
using the Scripps REMUS on the South Bay Ocean Outfall (SBOO) and the Point Loma Ocean Outfall 
(PLOO).  Specifications for each outfall are shown in Table 1.   
 
Ocean Outfall Specifications 
 
Table 1. South Bay Ocean  Outfall (SBOO) and  Point Loma Ocean Outfall (PLOO) specifications. 
 Depth of 

Discharge 
Average 

Flow 
Study  
Period 

Diffuser 
Type 

Operators 

 (m) (m3/s) 
 

   

SBOO 27 1.05    July 2007 –  
      October 2008 

Y-shaped  
(Only 1/3 of lower 

leg operational) 

International Boundary 
Water Commission 

 
PLOO 95 7.36    April 2010 –  

April 2011 
 

Y-shaped 
City of San Diego 
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SBOO/PLOO Moorings 
Oceanographic buoys designed by Scripps Institution of Oceanography for realtime monitoring of ocean 
conditions at a POTW discharge were used for this study and were similar in configuration at the SBOO and 
PLOO.   The mechanics of the mooring consists of a surface buoy that contained an Acoustic Doppler 
Current Profiler (ADCP TRDI Instruments, San Diego, CA)1, a temperature chain (Precision Measurement 
Engineering, Encinitas, CA)2, a self-contained temperature and salinity sensor (Seabird Electronics, Seattle 
WA)3, and Scripps-built data logger, satellite telemetry unit, Global Positioning System (GPS) receiver, and 
a battery pack. All mechanical aspects of the buoys’, mooring, and anchoring system were designed and 
fabricated by technical staff within the research group. The system was designed for a nominal 6-month 
servicing interval to replace sensor batteries and offload data from the internal memory recorders. Due to 
mechanical wear and fatigue on the mooring components, major components of the mooring (swivels, chain, 
and shackles) were also replaced at this time.  Ocean currents were measured using a downward looking 
ADCP that provided profiles of ocean currents from 4.3 m to the sea floor.   
 
Measurements of water column stratification were made using temperature sensors located at different 
depths. For each buoy, a temperature chain was employed, which consisted of 10 nodes spaced across the 

                         
1 Manufactured by Teledyne RD Instruments 
2 Manufactured by Precision Measurement Engineering 
3 Manufactured by Seabird Electronics 

Figure 1. Location map of South Bay (SBOO) and Point Loma (PLOO) 
Ocean Outfalls.  
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water column, each measuring ocean temperature with accuracy of 0.01°C.  Measurements at each depth 
were time-synchronized to provide a water column profile of stratification at 5-minute intervals.    Both data 
from the ADCP and temperature chain were transmitted hourly via Iridium satellite message, and posted to a 
website for data access within minutes of transmission. The near real-time data, and graphical products of 
trends in stratification and currents are generated hourly in an automated fashion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
REMUS AUV 
The Remote Environmental Measuring UnitS (REMUS)4 (Figure 3) vehicle is an autonomous underwater 
vehicle with a 100m depth rating and 22 hour battery capacity when transiting at 3 knots.  Mission life is a 
function of speed, and decreases to 8 hours at maximum speeds of approximately 5 knots.  The system uses 
both onboard navigation sensors (compass for heading, Doppler Velocity Log (DVL) for speed and altitude 
over seafloor, and pressure sensor for vehicle depth) and external sensors (GPS, transponders) for navigation.  
Survey missions are developed and uploaded to the vehicle before deployment using a Wi-Fi connection.   
The vehicle is typically launched by two persons from the boat at a pre-set location to begin its mission. 
Upon mission start, a GPS fix is obtained before the vehicle dives below the surface to initialize its 
navigation.  During the mission, the vehicle relays its position, status, and engineering data using an 
underwater acoustic modem system to a receiver on the ship.  Typically messages are transmitted every 2-3 
minutes.  In addition, the shipboard system can range the vehicle as well as send low level commands (start, 
stop, abort).  Upon completion of the mission, the vehicle is again recovered by two personnel.   
 

                         
4 Manufactured by Hydroid LLC 

 

Figure 2.   Drawing and a photograph of the Scripps-designed coastal buoy system 
for measuring stratification and currents at the South Bay and Point Loma Ocean 
Outfalls.  
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The vehicle also includes an array of instrumentation for environmental monitoring. The combination of the 
conductivity, temperature, depth (CTD) and optical sensors (the standard tools used in boat-based National 
Pollutant Discharge Elimination System (NPDES) monitoring programs) placed onto a flexible platform 
such as REMUS, lends itself well to the plume mapping through surveying changes in ocean properties. The 
REMUS has four main sections—a nose section, with a 1200 kHz ADCP, a mid-body, and tail section. The 
nose section contained both the Ultra-Short BaseLine (USBL) and Long BaseLine (LBL) acoustic navigation 
transducers. Initial instrumentation also included the following sensors:  YSI CTD, WETLabs BB2F (optical 
backscatter and chlorophyll-a). During initial surveys at the SBOO, boat based sampling of the plume water 
indicated it had an elevated CDOM signature.  Thus, to optimize plume tracking the AUV payload was 
augmented with a higher resolution CTDand a WETLabs ECO triplet capable of measuring optical 
backscatter and CDOM.  The higher resolution CTD (Neil Brown Instruments, Falmouth, MA) samples data 
at 1 Hzand allows for accurate data collection across temperature and salinity gradients. 
 
The three dimensional track of the REMUS is available after each outfall survey and is the first step in data 
assessment to verify the region sampled is consistent with survey objectives.   Figure 4 shows examples of a 
a) plan view of a near-field  SBOO mission on March 3rd, 2008 and b) a three dimensional view of an 
undulating survey and PLOO tracks on August 3rd, 2010.   The ‘mow the lawn’  pattern for SBOO sampled 
at1 Hz at three nominal depths centered at  20 m, 15 m, and 10 m with a speed of 3.5 knots with a resulting  
horizontal resolution of 1.5 m.  In addition, an oval track measured around the effluent source using a 6 m 
vertical saw tooth pattern for depth ranges 3 – 9 m, 10 – 16 m, and 17 – 23 m, yielding a horizontal 
resolution of approximately 57 m (defined as distance between same depth measurements).  Similarly, the 
far-field PLOO mission shown in Figure 4 utilized a saw tooth patterns typically between 30-90 m to 
increase spatial sampling of the study area.  For far-field missions, it was not feasible to map the plume at 
successive depths similar to near-field missions due to mission length and battery life limitations.  The 
pattern shown was found to be a good balance between spatial coverage and mission length for far-field 
missions.  
 

Figure 3. The Remote Environmental Measuring UnitS (REMUS) vehicle on 
board prior to deployment uses GPS, an acoustic doppler current profiler 
(ADCP),  conductivity, temperature, depth (CTD), optical backscatter, and 
colored dissolved organic matter  sensor (CDOM). 
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MISSION PLANNING  
The area around an ocean outfall can be separated into two distinct regions in which different mixing 
processes dominate.  After leaving the diffuser, the buoyant plume quickly mixes as a turbulent jet in a 
region local to the discharge(Roberts, 1989).  The majority of the mixing occurs during the plume rise in the 
near-field and has a characterisitic dilution ratio dependent on the engineering parameters of the discharge 
and the receiving water density structure. In the far-field, dilution increases at a much slower rate due to 
background oceanic turbulence driven by winds, tides, along-shore pressure gradients, and internal waves.  
 
To estimate the near-field plume height pre-mission, the U.S. EPA Roberts-Snyder-Baumgartner (RSB) 
plume model was applied to the buoy mooring data (Roberts et al. 1989, Roberts 1999a, Roberts 1999b, 
B.Jones, personal communication). The RSB model is based on piece-wise linear stratification assumptions 
between mooring buoy observations and uniform currents, for straight diffusers, assuming Gaussian 
distribution of the concentration of waste field at the end of near-field (Roberts 1999a, Roberts 1999b, Frick 
et al. 2001). 

 

Figure 4. Examples of 2D SBOO and 3D PLOO mission tracks for March 6th, 2008 and August 3rd, 
2010 respectively.  a)  SBOO:  The lawnmower-like pattern was measured at approximately 20 m, 15 m, 
and 10 m while the oval was measured using 6 m saw tooth pattern for depth ranges 3 – 9 m, 10 – 16 m, 
and 17 – 23 m.  b) PLOO:  Saw tooth trajectory pattern typical for far-field missions.  Horizontal 
resolution between saw tooth measurements is approximately 450 m.   
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An ongoing problem in accurately tracking the plume is the design of an effective sampling plan (Ramos et 
al., 2002).  Variable oceanographic conditions require a flexible mission plan that can be changed to adapt to 
the current ocean conditions at the time of sampling.  For SBOO and PLOO missions, multiple missions 
would be planned and developed prior to sampling using near real-time oceanographic conditions at the 
outfall as monitored by the buoy coupled with near-field plume model predictions. 
 
In the days preceding a monitoring mission, RSB model outputs and telemetered time series from the moored 
buoy instrumentation were utilized for PLOO REMUS path planning.  Figure 5 shows the RSB output of 
predicted plume rise height and thickness (black lines) overlaid on plume density for November 2010.  The 
observed plume rise height and mid-point are shown for monitoring missions on November 16th and 30th.  In 
the days leading up to each mission, these types of analysis were conducted to serve as mission planning aids 
for optimal mission depths of the vehicle. For each mission shown in Figure 5, 30 – 90 m was the depth 
range selected for the REMUS which was based on the predicted rise height and thickness of the plume.  

 
 
 
 
 
 
Mission planning for sampling the far-field plume rely upon time series analysis of data from the buoy’s 
current profiler.  These data are used to generate automated hourly spatial plots of estimated plume 
trajectories and plume age (Figure 6).  The web-accessible information served as a key decision aid for 
horizontal path planning of each plume survey.  When used in conjunction with the adjacent 25-hour 
averaged current profile plot, REMUS mission paths (dotted line) were chosen to spatially optimize plume 
measurements within the constraints of the vehicle life.  Hourly current velocity profiles were also monitored 
in the hours leading up to the mission.  If conditions had changed significantly from the time of mission 
planning, adjustments to the track could be made to increase the chances of successful plume detection. 
 
An example of this planning tool, for plume trajectories at depths 60, 65, 70, 80, 85, and 90 m is shown in 
Figure 6.  Hourly ADCP data is used to generate estimated positions of a particle (water parcel) discharged at 
the outfall (0 hour) for a two day period. Figure 6 and current profile data were the key decision aids used to 
design a PLOO far-field mission.  Due to the discharge depth (95 m), typical stratification conditions, we 

Figure 5. RSB model output illustrating predicted plume rise height and thickness based on plume 
density data input.  Such outputs were generated before each mission to plan mission depth ranges.  
Observed mid-point, thickness, and rise height are shown for November 16th and 30th missions.  The 
depth range chosen for each mission based on this output was 30 -90 m.  
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found through the RSB model output that the likelihood of the PLOO plume surfacing was low.  In contrast 
the SBOO discharge is at a depth of 27 m and has been found to surface during weak stratification conditions 
(Terrill et al 2009).  Thus, in addition to the methods described above, near real time high frequency (HF) - 
radar-derived surface currents were reviewed daily to assist in mission planning as the surface current data 
could be used to track the plume location (Kim, Terrill, Cornuelle 2009). 
 
 
 

 
 
 

 
 
 
 
 
 
 

Figure 6. Near real-time PLOO plume trajectory estimate for depths of 60, 65, 70, 75, 80, 85, and 90 
m from the PLOO mooring buoy.  The 2D monitoring mission (dotted line) was designed to optimally 
sample the plume location within the constraints of the vehicle’s operating parameters.  Circles at 1 
km, 2 km, and 3 km radius give approximate distance from the outfall. 
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RESULTS AND DISCUSSION 
 
SBOO Plume Surveys 
A total of 18 plume sampling missions were conducted between July 2007 and October 2008 using the 
REMUS and boat-based CTD’s.  The SBOO plume was sampled during dry weather when both high and 
low stratification conditions were present, as well as when the plume was being advected to the north and to 
the south. Wet weather sampling typically occurred during low levels of stratification.  
 
At the SBOO, our initial tools for plume detection were optical backscatter measured at 660nm and salinity 
signatures caused by the mixing of fresh plume water with the seawater. The plume can be consistently 
detected by an elevated optical backscatter signal and low salinity in the near-field while the low salinity 
signature often persisted in the far-field (up to 3.7 km). Seawater salinity in the vicinity of the outfall ranges 
from 33.7 psu in winter months to 34.2 psu during summer and the outfall plume has a signature of 0.07 to 
0.2 psu below ambient seawater. However, use of optical backscatter and salinity alone did not always 
provide a robust method for far-field detection because of other sources of variability for those scalars. Large 
variations in the vertical salinity profile relative to the plume signature can obscure plume detection while 
other sources of suspended particles, such as the bottom nepheloid layer (a layer of sediment suspended near 
the seafloor by current scouring) and organics from the kelp beds, introduce optical  backscatter signals 
similar to those found in the discharge plume.. Despite these limitations, the plume was identified in all but 
one mission (17 out of 18)  by using the spatial pattern of the plume emanating from the known discharge 
location and supporting velocity data from the SBOO buoy regarding the most probable plume trajectory.   
 

Figure 7. A 25-hour averaged ADCP profile plot for January 28, 2011 used to plan a PLOO 
monitoring missions.  The profile shows a southerly current direction (blue line) with little east/west 
current in the bottom half of the water column (expected plume depths).  
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In light of varied results in distinguishing plume water using only optical backscatter, a CDOM fluorometer 
and high resolution CTD were integrated into the REMUS.    CDOM exists naturally in seawater and 
freshwater environments and can consist of decaying organics and is typically a good indicator of fresh water 
land inputs.    
 
An example mission for resolving the near-field characteristics of the discharge was conducted on March 6, 
2008. Velocity measurements from the SBOO buoy show that flow is toward the south-southeast, and 
temperature measurements show that stratification is relatively weak with a 3 degrees Celsius (°C) 
temperature difference between bottom and surface waters. Plume signatures of elevated CDOM in the 
south-southeast are consistent with the estimated plume distribution based on SBOO buoy velocity 
measurements because the core of the plume is aligned with the estimated distribution (Figure 8).  The core 
of the plume has CDOM values as high as 10 ppb.   
 
Dilution Estimation 
Plume dilution in the near-field can be estimated using natural tracers associated with a sewage plume.  For 
the SBOO, dilution is estimated using the natural tracers temperature (T) and salinity (S) and their graphical 
representation on a T-S diagram, with initial mixing lines between wastewater and ambient waters similar to 
the methods presented by Washburn et al., 1992, Petrenko et al., 1998, and Ramos et al., 2007.  Once 
discharged from the diffuser, wastewater (with temperature Te and salinity Se) mixes with the surrounding 
ambient waters (Ta and Sa) at the depth of the diffuser.  The mixed water mass (Tm and Sm) correspond to an 
intermediate point on the initial mixing lines linking the effluent and ambient T-S points.  Tm and Sm vary 
according to the dilution factor between effluent and the ambient water characteristics near the diffuser.  For 
a given dilution D, Tm and Sm are equal to (Fischer et al., 1979): 
 

   (1) 

 
    (2) 

 
Observations presented as a function of CDOM on the T-S diagram show that the SBOO plume has a distinct 
water mass with a relatively fresh signature (approximately -0.7 parts per thousand [ppt] lower than ambient 
waters) and elevated CDOM values (Figure 9).  
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Once discharged from the diffusers, wastewater, which has lower density than the surrounding ambient 
waters, rises until an equilibrium depth is reached or it surfaces.  Most of the mixing is considered to take 
place during the plume rise in this zone and is often referred to as the initial mixing zone.  Initial effluent 
characteristics for the SBOO are used as the wastewater endpoint on the initial mixing lines and are defined 
as Te = 21o C and Se = 0 ppt (Wayne Belzer, SBOO manager, personal communication, April 1, 2011). Data 
from the March 6, 2008 mission indicated that some of this initial mixing was occurring between 25 m and 
23 m depth.  Two ambient T-S points unaffected by wastewater were used as end points for the initial mixing 
lines at these depths.  The range of Ta and Sa account for the natural variability in ambient conditions.  Given 
these characteristics, two initial mixing lines were drawn between the effluent T-S point and the two ambient 
T-S points (Figure 9).  Each point on the initial mixing line is separated by a dilution interval of 1:50.  
According to this plot, the core of the plume (which is easily distinguishable based on CDOM values) is 
located above the mixing lines indicating that the plume water has mixed with water shallower than the 
defined initial dilution zone.  However, several T-S points fall between the initial mixing lines with initial 
dilutions ranging from just below 100 to 200. 
 
This mission did not observe the plume surfacing, however, given the relatively weak stratification; it is 
probable that the plume rose to shallower depths at a location outside the scope of sampling.  Observations 
were likely made in a still rising plume, meaning minimum dilution estimations cannot be made from these 
data.   
 
 
 

Figure 8. SBOO Plume Organic Matter Concentrations.  Elevated values of CDOM (>7 ppb) 
indicate high concentrations of organic matter in the SBOO plume. The SBOO is shown in black 
with the observed plume toward the south-southeast. The observed plume is coincident with the 
plume trajectory (colored lines) estimated from the SBOO buoy velocity profiles. 
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PLOO Plume Surveys 
A total of 19 REMUS plume sampling missions were conducted between April 2010 and April 2011 on the 
PLOO.  The study area did not have the same constraints as the SBOO study area.  The mission ranges 
varied between less than 1 km and 9 km depending on mission objectives.  The plume was sampled during 
high stratification conditions which persisted throughout the year, as well as when the plume was being 
advected to the north and to the south.    
 
Dilution calculations from previous work have traditionally relied on the natural tracers temperature and 
salinity and their graphical representation on a T-S diagram as presented by Washburn, 1992 or dye tracer 
techniques (e.g. Proni et al., 1994; Carvalho et al., 2002; Hunt et al., 2010).  The use of T-S diagrams is only 
effective at estimating initial dilutions near the diffuser, while using artificial tracers are not practical for 
routine monitoring.  A method was developed to use CDOM as measure of the plume dilution in both the 
near and far-field. 
 
Source Effluent CDOM Dilution Calibration: January 25th, 2011 
 
A WETlabs ECO Fluorometer calibrated to measure CDOM at fluorescence excitation/emission (Ex/Em) = 
370/460 nm proved to be an effective technique in plume mapping during the SBOO missions. Similar 
conclusions were found by Petrenko et al., 1997 while using a fluorometer at Ex/Em 228/340.  They 
concluded that lower wavelengths are unaffected by phytoplankton layers and in contrast with salinity; do 
not decrease with shallower depths.  Thus, it may be a more promising technique than traditional natural 
tracer methods (salinity, backscatter). 
 
A calibration using source effluent from the Point Loma Wastewater Treatment Plant (PLWTP) was 
conducted to determine the relationship between the source effluent CDOM signature and the dilution ratios 

Figure 9. A Temperature-Salinity (T-S) Diagram colored by CDOM concentrations for sampling 
conducted on March 6, 2008, shows the plume as a distinct water mass with a low salinity 
(approximately 33.4 ppt), high CDOM (>6 ppb) signature. Lines of constant density are shown 
with dashed lines.  Initial mixing lines show a range of initial dilutions between 100 – 400 ppb. 
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as calculated from CDOM.  A black 100 gallon tank was utilized for high dilutions (1:50 to 1:600) while a 
black 5 gallon tank was used for lower dilutions values (1:1 to 1:25).  Both containers were tested to ensure 
no bias was created by the sampling setup and the dark tanks were used to remove stray light.  Seawater with 
background CDOM concentration of 3.96 ppb, was used to dilute the effluent to achieve the desired ratios 
(Figure 10).  The calibration curve shows a linear trend with an R2 value of 0.9876 and a maximum dilution 
of 1:600.  Dilutions above this ratio did not exhibit a measurable difference from background CDOM 
signatures.  The CDOM signature of the source effluent measured 117 ppb and had a consistent value in 
separate calibrations.  Assuming that CDOM is a conservative tracer, dilutions of plume water are calculated 
in both the near and far-field regions by manipulating the equation: 
 

   (3) 

 
where C1 and V1 are the initial concentration and initial volume, and C2 and V2 are the new concentration and 
new volume.  Substituting variables yields: 
 
 

   (4) 

 
  
where: 
 
Csw = CDOM concentration of plume water (minus background concentrations); 
Cww = CDOM concentration of effluent; 
Vsw = Volume of seawater; 
Vww = Volume of wastewater. 
 
Let Vww = 1 and solve for the parts of seawater (Vsw) required to reach the measured seawater concentration: 
 

   (5) 

 
Equation 5 allows for calculation of the entire dilution field based off of the CDOM T-S diagrams of each 
PLOO mission.  Figure 11 show the T-S diagram (top image) from the February 28th, 2011 PLOO mission 
used to calculate the subsequent dilution field (bottom image).  The CDOM signature of the plume clearly 
distinguishes the plume from the surrounding ambient water allowing for estimates of the dilution of plume 
water.  For each CDOM measurement within the plume, Csw is calculated by subtracting the background 
CDOM value from the measured value.  Knowing Cww = 117 ppb, the dilution field is calculated using 
equation 5.   A dilution of 1:100 is shown in the core of the plume decreasing to 1:250 at the areas of the 
plume adjacent to ambient waters.  
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Figure 10.  A CDOM calibration curve of source effluent from the Point Loma Wastewater 
Facility. The effluent was mixed with seawater (background CDOM = 3.96) to create a range of 
dilutions from 1:1 to 1:600.  The WETlabs ECO triplet used on the REMUS was used to measure 
CDOM concentrations at each dilution ratio.  The graph shows a linear trend with successful 
measurement of CDOM signatures up to a dilution of 1:600 before background contamination.   
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The spatial extent of the plume is shown in Figure 12 along with the vertical distribution of the number of 
measurements of plume water (n).  For this mission, current measurements in the hours preceding 
deployment were highly variable, adding to the difficultly of mission planning.  The mission path shown in 
Figure 12 was selected based on current readings minutes before deployment.  Due to the variability of the 
currents, the eastern edge of the plume was not captured, thus making accurate estimates of plume width 

Figure 11.  A CDOM T-S diagram (top) for the February 28th, 2011 PLOO mission.  The CDOM 
signature of the plume clearly separates it from surrounding ambient water.  These data are used to 
calculate the dilution field seen in the bottom plot.  According to the plot, the core of the plume has 
dilutions around 1:100. 
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difficult.  However, the vertical distribution figure shows a plume rise height of approximately 35 m and a 
thickness of 55 m.   
 

                           
 
 
 

 
 
Long range PLOO missions were performed when current directions were consistent in one direction for 
more than a day.  These conditions typically form a stable plume moving downstream consistent with current 
trajectories allowing for easier path planning.  An example of a mission under these conditions is shown in 
Figure 13.  Current trajectories for a 24 hour period predict a southerly direction for plume advection.  The 
observed plume is toward the south-southeast.  The difference between the predicted and observed directions 
may be due to spatial variations in the currents that are not considered in our trajectory computation based 
upon data from a single location.  Despite these offsets, the REMUS path clearly captures the plume 
advected 5 km from the discharge.  The cross-section of the plume appears to remain relatively stable as 
distance increases from the source in the far-field.  Figure 13 provides a mapping of the plume dilution.   
 
Figure 14 presents the median of the dilution ratios as measured by CDOM as a function of time from the 
source for two missions under similar environmental conditions; August 3, 2010 and February 28, 2011.  The 
median of the dilution ratio is based upon all the data sampled by the AUV at a particular range pass (eg – 
Figure 13), while the time estimates are based upon the advection time scale as computed using the current 
meter data.  Similar plume Froude numbers, direction, rise height, and thickness allowed direct comparisons 
between the two datasets to determine dilution trends in the entire mixing field.  The trend for the dilution 
ratio is found to vary as t5/3 in the nearfield and then quicly transition to a much slower mixing rate of t0.15 in 
the far-field.  These results are expected since dilution in the far-field is dominated by lower background 
ocean turbulence levels vs the near-field jet where buoyancy and momentum exchange processes dominate.   
Figure 14 illustrates both the dynamic range of discharge plume dilutions over which CDOM can be used as 
well as the effectiveness of the AUV sampling to characterize both nearfield and far-field mixing.    
 

 

Figure 12.  CDOM concentrations for a mission on February 28th, 2011.  The PLOO is shown in 
black with the observed plume toward the south-southeast.  The adjacent figure denotes the vertical 
distribution of plume measurements (n) that fall into thresholds designating plume water (CDOM > 
4.25).  These figures allow for estimates of the plume width, thickness and rise height.                         
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Figure 13.  Top:  CDOM concentrations for a long range mission on August 3rd, 2010.  The PLOO 
is shown in black with predicted particle trajectories (colored lines) heading south from the outfall 
and the observed plume toward the south-southeast.  Bottom: Dilution ratios of the measured  
plume calculated using Equation 5.                                                                                                         
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CONCLUSIONS 
In this paper, we report the results of developing methodologies for using AUVs for surveying discharge 
plumes at two different ocean outfalls located off the coast of San Diego, California. The methodologies 
have evolved, and are based upon over 50 different plume surveys in support of special studies to better 
understand those particular dischargers at resolutions never before measured.   A plume mapping technique 
using CDOM as a tracer was developed to effectively detect and map wastewater plumes  as well as estimate 
their dilution.  Our ability to capture the elusive discharge plumes were made possible only through use of 
modern ocean observation instrumentation that telemetered data in near real-time and allowed for adaptive  
AUV mission planning.  These data were used to both estimate the plume rise height and the trajectory of the 
plume advection by background currents. While optical backscatter was found to provide a signature for the 
plume water, onboard CDOM measurements proved more robust at tracking the plume than traditional 
techniques.   
 
Previous work using natural tracers was typically relegated to the near-field due to the inability of traditional 
natural tracers (salinity, backscatter) to maintain a plume signature with increased distance from the outfall.  
Our results show that the CDOM signature of the plume does not share these same limitations allowing for 
high resolution mapping of plumes in both the near and far-fields.  Missions conducted on the PLOO built on 
the techniques used from the SBOO work to better characterize the plume.  A focus of the work was 
developing a method to calculate the dilution field based on CDOM values.  Calibrating the CDOM signal to 
effluent dilution provides a capability not yet realized for effectively measuring the performance of the 
discharge mixing in both the near and far-field. 

Figure 14.  A log-log plot of the median of the measured dilution ratios using the CDOM proxy as 
a function of time from PLOO.  A near-field (February 28, 2011) and far-field (August 3, 2010) 
mission were combined to show the trend in dilution as a function of time from the outfall.  Both 
missions had similar plume direction and Froude number. .The AUV samples both the near and far-
field effectively. 



 19

 
This work shows the feasibility of using the natural plume tracer, CDOM, to effectively map plume water 
and plume characteristics.  Traditional methods using salinity and backscatter signatures were effective in 
mapping plume water in the near-field; however they were often obscured by other sources of variability, 
particularly as distance increased from the source.  Conversely, elevated CDOM signatures were consistent 
in both the near and far-fields allowing for direct calculations of plume dilution, width, height and thickness.  
The results suggest that plume mapping/characterization based on elevated CDOM plume signatures is a 
viable option for routine monitoring of POTW ocean discharges.  We anticipate that continued analysis of 
the data will allow us to examine how variations in background ocean conditions will influence the far-field 
mixing. 
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