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Abstract 

Autonomous Underwater Vehicles have already been shown to be very useful for monitoring 
routine of ocean outfalls. The major advantage of this technology over traditional methods is the 
ability to collect high-resolution data which can be very valuable for environmental impact 
assessment and comparison with plume prediction models. Once the data has been collected in the 
field it is necessary to extrapolate from monitoring samples to unsampled locations. Geostatistics 
has been used with success to obtain spatial information of natural resources. In this work 
geostatistics is used to model and map the spatial distribution of temperature and salinity 
measurements gathered by MARES AUV in a monitoring campaign to Foz do Arelho outfall. The 
kriged maps show the spatial variation of these parameters in the area studied and from them it is 
possible to identify the effluent plume from the receiving waters in the vicinity of the discharge. 
The salinity distribution is then used to estimate dilution. The results demonstrate that this 
methodology provides good estimates of the dispersion of effluent which are valuable for 
assessing the environmental impact and managing sea outfalls. 
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INTRODUCTION 

Autonomous Underwater Vehicles (AUVs) already demonstrated to be very appropriate for high-
resolution surveys of small features such as outfall plumes. Some of the advantages of these 
platforms include: easier field logistics, low cost per deployment, good spatial coverage, sampling 
over repeated sections and capability of feature-based or adaptive sampling. Demands for more 
reliable model predictions, and predictions of quantities that have received little attention in the past 
are now increasing. These are driven by increasing environmental awareness, more stringent 
environmental standards, and application of diffusion theory in new areas. Although very chaotic 
due to turbulent diffusion, the effluent’s dispersion process tends to a natural variability mode when 
the plume stops rising and the intensity of turbulent fluctuations approaches to zero ([1]). It is likely 
that after this point the pollutant substances are spatially correlated. In this case, geostatistics 
appears to be an appropriate technique to model the spatial distribution of the effluent. In fact, 
geostatistics has been used with success to analyze and characterize the spatial variability of soil 
properties, to obtain information for assessing water and wind resources, to design sampling 
strategies for monitoring estuarine sediments, to study the thickness of effluent-affected sediment in 
the vicinity of wastewater discharges, to obtain information about the spatial distribution of sewage 
pollution in coastal sediments, among others. As well as giving the estimated values, geostatistics 
provides a measure of the accuracy of the estimate in the form of the kriging variance. This is one 
of the advantages of geostatistics over traditional methods of assessing pollution. In this study we 
use ordinary block kriging to model and map the spatial distribution of temperature and salinity 
measurements gathered with MARES AUV in a monitoring campaign to Foz do Arelho outfall, 
aiming to distinguish the effluent plume from the receiving waters, characterize its spatial 
variability in the vicinity of the discharge and estimate dilution. In this work geostatistics is used to 
model and map the spatial distribution of temperature and salinity measurements gathered by 
MARES AUV in a monitoring campaign to Foz do Arelho outfall, with the aim of distinguishing 



the effluent plume from the receiving waters, characterizing its spatial variability in the vicinity of 
the discharge and estimating dilution. In the next section MARES AUV's physical and operating 
characteristics are fully described. In the third section the methodology of the spatial analysis is 
applied to the case study. In the forth section the spatial distribution of salinity is used to estimate 
dilution. Finally we discuss the results and give the conclusions. 
 
 
MARES AUV 

MARES (Modular Autonomous Robot for Environment Sampling) AUV has been successfully 
used to monitor sea outfalls discharges ([2,3]) (see Figure 1). MARES is 1.5 m long, has a diameter 
of 8-inch and weighs about 40 kg in air. It features a plastic hull with a dry mid body (for 
electronics and batteries) and additional rings to accommodate sensors and actuators. Its modular 
structure simplifies the system's development (the case of adding sensors, for example). It is 
propelled by two horizontal thrusters located at the rear and two vertical thrusters, one at the front 
and the other at the rear. This configuration allows for small operational speeds and high 
maneuverability, including pure vertical motions. It is equipped with an omnidirectional acoustic 
transducer and an electronic system that allows for long baseline navigation. The vehicle can be 
programmed to follow predefined trajectories while collecting relevant data using the onboard 
sensors. A Sea-Bird Electronics 49 FastCAT CTD had already been installed onboard the MARES 
AUV to measure conductivity, temperature and depth. MARES' missions for environmental 
monitoring of wastewater discharges are conducted using GUI software that fully automates the 
operational procedures of the campaign ([4]). By providing visual and audio information, this 
software guides the user through a series of steps which include: (1) real time data acquisition from 
CTD and ADCP sensors, (2) effluent plume parameter modeling using the CTD and ADCP data 
collected, (3) automatic path creation using the plume model parameters, (4) acoustic buoys and 
vehicle deployment, (5) automatic acoustic network setup and (6) real time tracking of the AUV 
mission. 

 

Figure 1. AUV MARES. 
 
 
STUDY AREA 

The Foz do Arelho outfall is located off the Portuguese west coast near the Óbidos lagoon. In 
operation since June 2005, is presently discharging about 0.11 m3/s of mainly domestic wastewater 
from the WWTPs of Óbidos, Carregal, Caldas da Rainha, Gaeiras, Charneca and Foz do Arelho, but 
it can discharge up to 0.354 m3/s. The total length of the outfall, including the diffuser, is 2150 m. 
The outfall pipe, made of HDPE, has a diameter of 710 mm. The diffuser, which consists of 10 
ports spaced 8 or 12 meters apart, is 93.5 m long. The ports, nominally 0.175 m in diameter, are 
discharging upwards at an angle of 90º to the pipe horizontal axis; the port height is about 1 m. The 
outfall direction is southeast-northwest (315.5º true bearing) and is discharging at a depth of about 
31 m. In that area the coastline itself runs at about a 225º angle with respect to true north and the 
isobaths are oriented parallel to the coastline. A seawater quality monitoring program for the outfall 



has already started in May 2006. Its main purposes are to evaluate the background seawater quality 
both in offshore and nearshore locations around the vicinity of the sea outfall and to follow the 
impacts of wastewater discharge in the area. During the campaign the discharge remained fairly 
constant with an average flowrate of approximately 0.11 m3/s. The operation area specification was 
based on the outputs of a plume prediction model ([1]) which include mixing zone length, spreading 
width, maximum rise height and thickness. The model inputs are, besides the diffuser physical 
characteristics, the water column stratification, the current velocity and direction, and the discharge 
flowrate. Information on density stratification was obtained from a vertical profile of temperature 
and salinity acquired in the vicinity of the diffuser two weeks before the campaign. The water 
column was weakly stratified due to both low-temperature and salinity variations. The total 
difference in density over the water column was about 0.13σ -unit. The current direction of 110º 
was estimated based on predictions of wind speed and direction of the day of the campaign. A 
current velocity of 0.12 m/s was estimated based on historic data. The effluent flowrate consider for 
the plume behavior simulation was 0.11 m3/s. According to the predictions of the model, the plume 
was spreading 1 m from the surface, detached from the bottom and forming a two-layer flow. The 
end of the mixing zone length was predicted to be 141 m downstream from the diffuser. Figure 2 
shows a plan view of the AUV operation area, mainly in the northeast direction from the diffuser, 
covering about 20000 m2. The AUV collected CTD data at 1.5 m and 3 m depth, in accordance to 
the plume minimum dilution high prediction. During the mission the vehicle transited at a fairly 
constant velocity of 1 m/s (2 knots) and recorded data at a rate of 16 Hz. Maximum vertical 
oscillations of the AUV in performing the horizontal trajectories were less than 0.5 m (up and 
down). 

 
Figure 2. AUV operation area. 

 
 
SPATIAL ANALYSIS 

The geostatistical analysis was carried out using an application that was developed based on the R 
statistical software ([5]) and on the Gstat package of R ([6]). This application guides the user 
through several steps that perform the geostatistical analysis. More details about this software 
application may be found in [7]. In order to obtain elementary knowledge about the temperature and 
salinity data sets, conventional statistical analysis was conducted (see the results in Table 1 and 
Table 2. At the depth of 1.5 m the temperature ranged from 15.359ºC to 15.562ºC and at the depth 
of 3 m the temperature ranged from 15.393ºC to 15.536ºC. The mean value of the data sets was 
15.463ºC and 15.469ºC, respectively at the depths of 1.5 m and 3 m, which was very close to the 
median value that was respectively 15.466ºC and 15.472ºC. The coefficient of skewness is 



relatively low (-0.309) for the 1.5 m data set and not very high (-0.696) for the 3 m data set, 
indicating that in the first case the histogram is approximately symmetric and in the second case that 
distribution is only slightly asymmetric. The very low values of the coefficient of variation (0.002 
and 0.001) reflect the fact that the histograms do not have a tail of high values. At the depth of 1.5 
m the salinity ranged from 35.957 psu to 36.003 psu and at the depth of 3 m the salinity ranged 
from 35.973 psu to 36.008 psu. The mean value of the data sets was 35.991 psu and 35.996 psu, 
respectively at the depths of 1.5 m and 3 m, which was very close to the median value that was 
respectively 35.990 and 35.998 psu. The coefficient of skewness is not to much high in both data 
sets (-0.63 and -1.1) indicating that distributions are only slightly asymmetric. The very low values 
of the coefficient of variation (0.0002 and 0.0001) reflect the fact that the histograms do not have a 
tail of high values. The ordinary kriging method works better if the distribution of the data values is 
close to a normal distribution. Therefore, it is interesting to see how close the distribution of the 
data values comes to being normal. Figure 3 shows the plots of the normal distribution adjusted to 
the histograms of the temperature measured at depths of 1.5 m and 3 m, and Figure 4 shows the 
plots of the normal distribution adjusted to the histograms of the salinity measured at depths of 1.5 
m and 3 m. Apart from some erratic high values it can be seen that the histograms are reasonably 
close to the normal distribution. 
For the purpose of this analysis, the temperature and the salinity measurements were divided into a 
modeling set (comprising 90% of the samples) and a validation set (comprising 10% of the 
samples). Modeling and validation sets were then compared, using Student's-t test, to check that 
they provided unbiased sub-sets of the original data. Furthermore, sample variograms for the 
modeling sets were constructed using the Matheron's method-of-moments estimator (MME) 
estimator [8] and the Cressie estimator (CRE) [9]. This robust estimator was chosen to deal with 
outliers and enhance the variogram's spatial continuity. An estimation of semivariance was carried 
out using a lag distance of 2 m [10,11]. 

Table 1. Summary statistics of temperature measurements. 

 Temperature@1.5 m Temperature@3 m 

Samples 20,026 10,506 

Mean 15.463ºC 15.469ºC 

Median 15.466ºC 15.472ºC 

Minimum 15.359ºC 15.393ºC 

Maximum 15.562ºC 15.536ºC 

Coefficient of skewness -0.31 -0.70 

Coefficient of variation 0.002 0.001 

Table 2. Summary statistics of salinity measurements. 

 Salinity@1.5 m Salinity@3 m 

Samples 20,026 10,506 

Mean 35.991 psu 35.996 psu   

Median 35.990 psu 35.998 psu   

Minimum 35.957 psu 35.973 psu   

Maximum 36.003 psu 36.008 psu   

Coefficient of skewness -0.63 -1.1 

Coefficient of variation 0.0002 0.0001 



     
Figure 3. Histograms of temperature measurements at depths of 1.5 m (left) and 3 m (right). 

     
Figure 4. Histograms of salinity measurements at depths of 1.5 m (left) and 3 m (right). 

Table 3. Parameters of the fitted variogram models for temperature measured at depths of 1.5 and 
3.0 m. 

Depth 
Variogram 
Estimator 

Model Nugget Sill Range 

1.5 
MME Matern ( 0.4)ν =  0.000 0.001 75.0 

CRE Matern ( 0.5)ν =  0.000 0.002 80.1 

3.0 
MME Matern ( 0.3)ν =  0.000 0.0002 101.3 

CRE Matern ( 0.7)ν =  0.000 0.002 107.5 

Table 4. Parameters of the fitted variogram models for salinity measured at depths of 1.5 and 3.0 m. 

Depth 
Variogram 
Estimator 

Model Nugget Sill Range 

1.5 
MME Matern ( 0.6)ν =  0.436 11.945 134.6 

CRE Matern ( 0.6)ν =  0.153 10786.10
9 

51677.1 

3.0 
MME Matern ( 0.8)ν =  0.338 11.724 181.6 

CRE Gaussian 0.096 120.578 390.1 



Table 3 and Table 4 show the parameters of the fitted models to the omnidirectional sample 
variograms constructed using MME and CRE estimators. All the variograms were fitted to Matern 
models (for several shape parameters ν ) with the exception to the salinity data measured at the 
depth of 3 m. The range value (in meters) is an indicator of extension where autocorrelation exists. 
The variograms of salinity show significant differences in range. The autocorrelation distances are 
always larger for the CRE estimator which may demonstrate the enhancement of the variogram's 
spatial continuity. All variograms have low nugget values which indicates that local variations 
could be captured due to the high sampling rate and to the fact that the variables under study have 
strong spatial dependence. Anisotropy was investigated by calculating directional variograms. 
However, no anisotropy effect could be shown. 
The block kriging method was preferred since it produced smaller prediction errors and smoother maps 
than the point kriging [12]. Using the 90% modeling sets of the two depths, a two-dimensional 
ordinary block kriging, with blocks of 10 10×  m2, was applied to estimate temperature at the locations 
of the 10% validation sets. 
The validation results for both parameters measured at depths of 1.5 m and 3 m depths are shown in 
Table 5 and Table 6. At both depths temperature was best estimated by the variogram constructed 
using CRE. Salinity at the depth of 1.5 m was best estimated by the variogram constructed using CRE 
and at the depth of 3 m was best estimated using the Gaussian model with the MME. The difference in 
performance between the two estimators: block kriging using the MME estimator (MBK) or block 
kriging using the CRE estimator (CBK) is not substantial. 
Figure 5 shows the omnidirectional sample variograms for temperature at the depth of 1.5 m and 3 m 
fitted by the preferred models. Figure 6 shows the omnidirectional sample variograms for salinity at the 
depth of 1.5 m and 3 m fitted by the preferred models. 
The R2 value for the temperature at the depth of 1.5 m was 0.9211 and the RMSE was 0.0088248ºC, 
and at the depth of 3 m was 0.8827 and the RMSE was 0.0058316ºC (Table 5). The R2 value for the 
salinity at the depth of 1.5 m was 0.9513 and the RMSE was 0.0016435 psu, and at the depth of 3 m 
was 0.8982 and the RMSE was 0.0019793 psu (Table 6). 

Table 5. Cross-validation results for the temperature maps at depths of 1.5 and 3 m. 

Depth Method R2 ME MSE RMSE 

1.5 
MBK 0.9184 2.0174e-4 8.0530e-5 9739e-3 

CBKa 0.9211 1.6758e-4 7.7880e-5 8248e-3 

3.0 
MBK 0.8748 1.0338e-4 3.6295e-5 6.0244e-3 

CBKa 0.8827 0.6538e-4 3.4008e-5 5.8316e-3 
a The preferred model. 

Table 6. Cross-validation results for the salinity maps at depths of 1.5 and 3 m. 

Depth Method R2 ME MSE RMSE 

1.5 
MBK 0.9471 3.1113e-5 2.8721e-6 1.6947e-3 

CBKa 0.9513 -3.1579e-5 2.7010e-6 1.6435e-3 

3.0 
MBK 0.8982 -7.1735e-5 3.9175e-6 1.9793e-3 

CBKa 0.7853 -8.1264e-5 8.2589e-6 2.8738e-3 
a The preferred model. 
 
 
 



     
Figure 5. Variograms for temperature at depths of 1.5 m (left) and 3 m (right). 

     
Figure 6. Variograms for salinity at depths of 1.5 m (left) and 3 m (right). 

 
Figure 7 shows the block kriged maps of temperature on a 2 2×  m2 grid using the preferred models. 
Figure 8 shows the block kriged maps of salinity on a 2 2×  m2 grid using the preferred models. In 
the 1.5 m kriged map the temperature ranges between 15.407ºC and 15.523ºC and the average value 
is 15.469ºC, which is in accordance with the measurements (range 15.359ºC – 15.562ºC and 
average 15.463ºC). In the 3 m kriged map the temperature ranges between 15.429ºC and 15.502ºC 
and the average value is 15.467ºC, which is in accordance with the measurements (range 15.393ºC 
– 15.536ºC and average 15.469ºC). In the 1.5 m kriged map the salinity ranges between 35.960 psu 
and 36.004 psu and the average value is 35.992 psu, which is in accordance with the measurements 
(range 35.957 psu – 36.003 psu and average 35.991 psu). In the 3 m kriged map the salinity ranges 
between 35.977 psu and 36.004 psu and the average value is 35.995 psu, which is in accordance 
with the measurements (range 35.973 psu – 36.008 psu and average 35.996 psu). 
As predicted by the plume prediction model, the effluent was found dispersing close to the surface. 
From the temperature and salinity kriged maps it is possible to distinguish the effluent plume from 
the background waters. It appears as a region of lower temperature and lower salinity when 
compared to the surrounding ocean waters at the same depth. 
At the depth of 1.5 m the major difference in temperature compared to the surrounding waters is 
about -0.116ºC while at the depth of 3 m this difference is about -0.073ºC. At the depth of 1.5 m the 
major difference in salinity compared to the surrounding waters is about -0.044 psu while at the 



depth of 3 m this difference is about -0.027 psu. 
It is important to note that these very small differences in temperature and salinity were detected 
due to the high resolution of the CTD sensor. Washburn et al. 1992 observed temperature and 
salinity anomalies in the plume in the order, respectively of -0.3ºC and -0.1 psu, when compared 
with the surrounding waters within the same depth range. The small plume-related anomalies 
observed in the maps are evidence of the rapid mixing process. Due to the large differences in 
density between the rising effluent plume and ambient ocean waters, entrainment and mixing 
processes are vigorous and the properties within the plume change rapidly [13,14]. 
The effluent plume was found northeast from the diffuser beginning, spreading downstream in the 
direction of current. Using the navigation data, we could later estimate current velocity and 
direction and the values found were, respectively, 0.4 m/s and 70ºC, which is in accordance with the 
location of the plume. 

    
Figure 7. Prediction map of temperature distribution (ºC) at depths of 1.5 m (left) and 3 m (right). 

 

    
Figure 8. Prediction map of salinity distribution (psu) at depths of 1.5 m (left) and 3 m (right). 

 



Figure 9 shows the variance of the estimation error (kriging variance) for the maps of temperature 
distribution at depths of 1.5 m and 3 m. The standard deviation of the estimation error is less than 
0.0195ºC at the depth of 1.5 m and less than 0.0111ºC at the depth of 3 m. It’s interesting to observe 
that, as expected, the variance of the estimation error is less the closer is the prediction from the 
trajectory of the vehicle. The dark blue regions correspond to the trajectory of MARES AUV. 

    
Figure 9. Variance of the estimation error for the maps of temperature distribution at depths of 

1.5 m (left) and 3 m (right). 
 
 
DILUTION ESTIMATION 

Environmental effects are all related to concentration C  of a particular contaminant X . Defining 

a
C  as the background concentration of substance X  in ambient water and 0C  as the concentration 

of X  in the effluent discharge, the local dilution comes as follows [15]: 
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where 0a
C  is the background concentration of substance X  in ambient water at the discharge depth. 

This expression in (2) can be arranged to give ( )0 0
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, which in simple terms 

means that the increment of concentration above background is reduced by the dilution factor S  
from the point of discharge to the point of measurement of C . Using salinity distribution at depths 
of 1.5 m and 3 m we estimated dilution using Equation 2 (see the contour maps in Figure 10). We 
assumed 0 2.3C = psu, 0 35.93

a
C = psu, 36.008

a
C = psu at 1.5 m depth and 36.006

a
C = psu at 3 m 

depth. The minimum dilution observed at the depth of 1.5 m was 705 and at the depth of 3.0 m was 
1164 which is in accordance with Portuguese legislation that suggests that outfalls should be 
designed to assure a minimum dilution of 50 at the surface [16]. 



    
Figure 10. Dilution maps at depths of 1.5 m (left) and 3 m (right). 

 
CONCLUSION 

Through geostatistical analysis of temperature and salinity obtained by an AUV at depths of 1.5 m 
and 3 m in an ocean outfall monitoring campaign it was possible to produce kriged maps of the 
sewage dispersion in the field. The spatial variability of the sampled data has been analyzed and the 
results indicated an approximated normal distribution of the temperature and salinity measurements, 
which is desirable. The Matheron's classical estimator and Cressie and Hawkins' robust estimator 
were then used to compute the omnidirectional variograms that were fitted to Matern models (for 
several shape parameters) and to a Gaussian model. The performance of each competing model was 
compared using a split-sample approach. In the case of temperature, the validation results, using a 
two-dimensional ordinary block kriging, suggested the Matern model ( 0.5ν = – 1.5m and 0.7ν = – 
3 m) with semivariance estimated by CRE. In the case of salinity, the validation results, using a 
two-dimensional ordinary block kriging, suggested the Matern model ( 0.6ν = – 1.5 m and 0.8ν = – 
3 m) with semivariance estimated by CRE, for the depth of 1.5 m, and with semivariance estimated 
by MME, for the depth of 3 m. The difference in performance between the two estimators was not 
substantial. Block kriged maps of temperature and salinity at depths of 1.5 m and 3 m show the 
spatial variation of these parameters in the area studied and from them it is possible to identify the 
effluent plume that appears as a region of lower temperature and lower salinity when compared to 
the surrounding waters, northeast from the diffuser beginning, spreading downstream in the 
direction of current. Using salinity distribution at depths of 1.5 m and 3 m we estimated dilution at 
those depths. The values found are in accordance with Portuguese legislation. The results presented 
in this paper demonstrate that geostatistical methodology can provide good estimates of the 
dispersion of effluent that are very valuable in assessing the environmental impact and managing 
sea outfalls. 
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